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I. INTRODUCTION

The question of strong Langmuir turbulence in magnetized plasmas is

important in studies of beam-plasma interactions in both space and

laboratory plasmas. Heretofore, studies of strong turbulence theory in

magnetized plasmas have centered on the dynamics of collapse and the

shape and stability of the localized structures which result. However,

such structures are expected to have electromagnetic signatures at

harmonics of the electron plasma frequency. While the electromagnetic

radiation from Langmuir solitons has been extensively studied for

field-free plasmas, 1-4 there has been scant treatment of the problem

of the strongly turbulent radiation process in magnetized plasmas.

This problem is of particular relevance due to increased interest in

experimental studies of electron beam driven strong turbulence in the
5-9

laboratory. It is our intention to address this question in the

present work, and to derive expressions for the radiation emissivity

from spiky Langmuir turbulence at the first and second harmonics of

the electron plasma frequency.

The organization of the paper is as follows. In Sec. II, we

derive an expression for the emissivity from an arbitrary, cylindri-

cally symmetric soliton at frequencies w = we, 2w e (where we denotes

the electron plasma frequency). It should be noted that the treatment

of emission at the electron plasma frequency is restricted to the

limit in which the radiation wavelength is much less than the scale

length of the soliton. In order to investigate simplified scaling

laws between the radiation emissivity and the soliton amplitude, we

consider the limiting case of one-dimensional Langmuir solitons in

Note: Manuscript submitted December 7, 1979.
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Sec. III. A numerical study of the angular dependence of the

emissivity is also presented in this section. In particular, we

investigate the variation of the radiation pattern with w e/e (where

9 is the electron cyclotron frequency). A summary and discussione

appears in Sec. IV, and the derivation of the plasma dispersion tensor

and the rtiation source current is given in an appendix.

II. THE EMISSIVITY

We assume a localized Langmuir perturbation of the form

=(,t) - VO(r,z)sinwet, (i)

where V (v,z) defines the soliton envelope, and the ambient magnetic

field B (-=B e ) defines the z-axis. The interaction between the
'O 0 1%1z

electrostatic field and the associated slow time scale oscillation in

the plasma density is implicitly included, and we use 6n(r,z) to denote

the density caviton. Both O(r,z) and dn(r,z) possess cylindrical sym-

metry about the z-axis, and it is assumed that O(r,z) and n(r,z) are

odd and even functions of z respectively.

The radiated power is defined to be

T/2

P -lim- f dt x fE(ct) - (2)
T fd V "I

-T/2

where 6E(x,t) is the radiation electric field, and 6Us(k,t) is the

source current due to the localized Langmuir perturbation. Equation

(2) can be expressed in terms of the Fourier amplitudes of 6E(x,t) and

6J (x,t) in the following manner

2
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P (2r)4 lrn d ~k dw 6E(kw) 63 (kw), (3)
T--o

where the asterisk (*) denotes the complex conjugate, and the Fourier

transform is defined as follows

f(k,w) - (2w)- 4 fd3 x( dt exp(iwt-ik.x)f(xt). (4)f J

A self-consistent relation between the radiation field and source

current is derived in the Appendix, and is of the form

A(k,w) •6E(k,w) -7 6 (k,w), (5)
; It 1.ItW %'l".

where the dispersion tensor is given by (k = k x + k zeb x %lx z Uz

A(k w) - c2 (k k - k2 1) + e(k,w). (6)

In Eq. (6), A is the unit dyadic, E(k,w) is the plasma dielectric ten-

qor, and we have thatx E C C E
xx yy xy yx 29 zz = 3,

. . . . ~W 0 2 /(W2 - 2) E2 2 2
Exz Czx Cyz Czy M0, where c, 1 e e 2 e e

W(2 _ e2), and c 1 - W' 2 /w2. Here w' = we(l + 6n /no) where
e 3 e e e ex o

n is the ambient electron density and 6nex denotes the extremum of 6n.

This dispersion tensor includes the strongly turbulent modifications to

the cold plasma approximation, and has been derived under the

restriction that the wavelength of the radiation be much less than the

scale length of the local perturbation.

Inverting Eq. (5) to find 6E(k,w) as a function of 6J (k,w), we

obtain
1 0

3



6E(k,w) = a 42! A S (kw) (7)
whr A(k,)) iV th q SB 4 s

where A(kw) is the determinant of A(kw), X (k,w) is the trace of the

classical adjoint of A(k,w), and a(kw) = 6E(k,w)/ItE(k,w)I is the unit

polarization vector. The power radiated per unit solid angle subtended

by k is found by substitution of (7) into (3), and it can be shown that

dP (2Tr)6 lim d I sdk2k d - -ss rk

0 0 W lu k2fk 

X la (±) ( ) 61s (k,w)12 6(k2 - k2 ), (8)

wherer ' denotes a sum over the wave modes of the system,

dQk = 2ff sin d8 (where e denotes the angle between k and B), and we
have summed over the contributions of positive and negative w. The

appropriate wave modes are described by

c2k 2  2a2(1 - a2 )

W- 2(1-a 2 ) - B2 (sin 2ep) , (9)

where the " + " and " - " denote the ordinary and extraordinary modes

respectively, a 
B2  2 2/W2, and 2 = sin4e + 4(w/Q

)2
e e e

x(l - c2 )2cos 2 8. This corresponds to the well-known Appleton-Hartree

dispersion relation in which w has been substituted for w to des-

e e

cribe the strong turbulence effect.

In this paper we treat emission at w We, 2 we, and write the

source current as the sum of contributions (see Appendix)

4
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6J (k,w) SJ ()(k) 6(w-W ) +- 6J () 6(w- 2w)where

6j1 (k) =-(2n) ~ exp(-ik-x) L

pe e e

6j(2) (k) = i(2r) - 4  e 3x exp(-ik-x)

x + e V ee *

+w 2 0e2- e 2 -g 2 ' V. 0
+e e  e ee(Vikx

W e e 

+ [I- + (k,2) + e' V V) 2

r-- r u e LOe zS e

+ e 2 

e e

and V E V - e (a/az). If we write the square of the delta function as

62 (w -W) = lim(T/2)6(w-w 0) and evaluate A/k 2 for the appropriate mode,
T-*-

then the expression for the radiated power becomes

OD 4 W2X (kw)

d = (21r) 5  dk2k dw C2"e' 6(k 2 -k5z)
k f fe 2

IV0 0

x ji(+)(kU') 6J(')* (W)1 6(w-we) +

5



2]
+ lh(k,w) &2) (k)I 6(W_ we)I (12)

In the evaluation of the radiated power at w n w and 2w whiche e

follows, we make use of the expression 0 a = - i( X )2(X ,X ,
SS 22 12 22 32

to describe the unit polarization vector, where X is the

classical adjoint of A. It should be noted, however, that this approach

is invalid when the eigenvalues of A are degenerate (i.e., when

= k 2 ). Since this occurs in the limit in which Q 0, care must

be exercised in order to treat the field-free case.

A. Emission at w = w Ze

In this frequency regime we are restricted to consideration of

waves whose wavelength is much less than the scale length of the per-

turbation, which is equivalent, in practice, to the condition that

c2k±2/We2 >16nex/noL. The emissivity n ( w dP-d()/dQ2 ) is defined to

be the power radiated per unit frequency per unit solid angle subtended

by k. In computing r(w ,), we retain only the contribution due to the
1 1 e

oscillatory current at w (i.e., U (_11 (k)) and finde %,s

W e / n \-2  N (0sin2e) I

W2 6n si 2 ]2

- e 0 + ex e (sin (13)
e e 0 e

where

f f dzf drr cos(k.z cosO)Jo(k rsinO) -Vj6 , (14)
n

-W 0 0

6



|w

= f z drr sinvkz cos,)J krsinBe (15)
-00

p2 = sin48 + 4 (w 2ee2) (6n ex/n )2COS2e, N(_ck/w e) is the index of

refraction, and

6n / 5n
ex (+ 'ex)J

2 no
=1- (16)

ex + (sin2e 3)

0 e

B. Emission at w 2w
e

In this frequency rcgime, the strongly turbulent contributions to

the dielectric properties of the plasma can be ignored, and the Appleton-

Hartree dispersion relation1 1 can be employed. After retaining only the

oscillatory source current at 2w in (12), we find that
e

e2 N,(p sin
2 a)n(2w ee) =- 367 erm 7 cjwPcosze (All, ji 1;4, 1

e

+ Aj 1'. I1 + AL'1 I.,I + A, L,)2 (17)

Vyhere

f dzf drr cos(kzcoso) J 0o(krsin) (V )12

0
w 00

=, f dzf dr sin(kzcosO) Jo(k+rsinO) (V,) (V,),

7-° o I

-7--



, = dzJ drrsin(k±zcosO) JI (krsine) (V )I.IV ) ,
0.1/

co mo

S9L =f dzf drrcos(kizcosO) Jo(krsinO) (VO). 2  (18)
0

and

= 1 1 2w 4  2

Alil , - ksine Nj2cos 2 e - (e 2)(4w 2-Q 2 )(N±2sin 8-
i2 (e e e e

+1 (7 2~ 2 -2  ) (sin2e+P))
4(w 2-q 2)p~ 2j 2

+______ e e e e sngp

+4 ( e 2-Q e2) (4w e 2Qe2

w2
e 2 N_2sin~cos6

e e

A I we2e kico so (N2sin2e + 4w e 2-S e 
2 (N±2sln20 3

o2 6w 2-Q 2
e e e (sin26;p))

4 we 4 we 2 2

A i L - 6w e 4 2sin 2 o- 3
A,± 2 k 1sine N 2 cos2  (we7- e 2 )(4we 2_e2 )N )

+1 (5we 2 _2e e 2s2;) (19)

4 (e2-e (sin .e19)

In addition, p2 = sin 46 + 9 (we 2/1 e2)cos 2 0, and

3w 2

n_2 = 12w e 2 e 2Q e(sin2 0 p) "  (20)

8



III. THE CASE OF ONE-DIMENSIONAL SOLITONS

We choose to apply the expressions derived in Sec. II to the case

of one-dimensional solitons since this is the only regime which is

analytically accessible, and for which the angular spectrum of the

radiation may be obtained in a relatively straightforward manner. We

assume the electric field and plasma density perturbations to be of the

form
12

V (r,z) = E(r) sech[K(r)Z]z, (21)

and

6n(rz) =- 6 K2 (r)Xe2 sech 2LK(r)z], (22)
n
0

where X is the electron Debye length, l/K(r) characterizes the parallele

scale length of the perturbation,

W(r) = 12 K2(r)Xe2 1 + -- (23)
noTe e

W(r) E2 (r)/8ir, Ti and yi are the ion temperature and ratio of specific

heats, and T is the electron temperature. In addition, we assume that
e

-1
K(r) = K exp(- r/p), where P(>> K ) characterizes the transverse

scale length of the perturbation. It must be remarked that in order to

neglect the radial component of the soliton field, we must have that

W2

IV T >> eT IV 1, (24)
We e

and
w2

Jo (kK0 l) V c >> tan(kK 0 )J ) We_ 2 IV.AI•  (25)
e e



As a result, we cannot treat the case in which w is arbitrarily closee

to e by means of Eqs. (21) and (22).
e

Use of (21)-(23) immediately yields the following expressions for

the emissivity at w and 2we e

2 3 n T /6n )-2
3i e o e ex iTi si 2eri(W°')= - 1 + - sin2

e(c) ( 2k-- )ee

N 5 (p±sin2e)
______ I 2 (26)

and
2 v e3 n oT e N (p sin2e)

T e tan 2  2(0)1 2, (27)e 'e)2)(9 ~ce e 22
±

where ve2 = T /me '

3 Ne
T±(e) + Z -(4( 2 ' Q 2 )(N 2 sin z e -

e e e e

7w 2 Q2
+4(w e e (sin 2e0P), (28)

e e e e

and the source integrals are

Ii, -- drr (I + K(r) / no Te 0°(krrsine)sech , 1  (29)

0

10
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The only regime in which (29) and (30) can be integrated

analytically is the case for which k. < K . However, it is important to

recognize that r(w ee) has been derived subject to the condition that

k > K (which is equivalent to 6 V 2 N 2 > c2 16nex/no) and no further
o e ±6 ex o)adn ute

analytic reduction is possible for the case of emission at w (29).

eeTurning, therefore, to the case of emission at 2w e, we find that when

6 << , (31)

the emissivity becomes

(2we, 6) = 3 I + / 8(e), (32)

where W 0 W(r = 0), and
0

(6) . .p±sin2e 2() k 4 pan2(33)PN± (1 + k. 2 p 2 sin2e)3

Thus, n(2w e,) n k.4p 4 in the limit in which k~p < 1, and

(2w 0) 1- (k~p) - 2 in the opposite case.

The emissivity expressed in (32) and (33) admits relatively

simple numerical analysis, and we display the angular spectra of the

ordinary and extraordinary modes in Figs. I and 2 by plotting &±(e) for

O 4 0 . w/2 and several choices of we/Q e and w ep/c. As shown in the

figures, there is a quadrupole radiation pattern for both the ordinary

and extraordinary modes, which is ..ighly sensitive to the transverse

scale size of the soliton. Specifically, for w ep/c > I the radiation

11



is strongly beamed in the directions parallel and antiparallel to soli-

ton propagation, and for w ep/c 1 peak emission occurs for 8 ! 7/4.

We note that for w ep/c < 1, the emissivity scales as n(2w e,) It sin 226

in the limit of large w e/Se 2,4 In Fig. 3, we plot n+(2w e,e)/n_(2w e,e)

for parameters consistent with those used in the computations of Fig. 1.

We remark that this quantity appears to be relatively insensitive to P

over the range studied (i.e., 0.1 < w ep/C < 10 ), and we display the

result for w ep/c = 1. The principal results are that (1) for we/Qe < 1

the ordinary mode tends to dominate the emission, but that this

situation is reversed when w /0e > 1, and (2) that the characteristic

dominance of either mode is greatly enhanced for e 400.

Finally, we observe that condition (31) is equivalent to the re-

quirement that Wo/noTe >> 12(ve/c) 
2 , and that it is clear from (32) that

in this limit n(2w ,e) . Wo .

In order to treat the case in which k± < Ko o we must rely on

wholly numerical methods. To this end we first rewrite

e( e) T (1 + YiTi) _no(l) (34)
8 c W e Te

and

n(2ee) = n T + 35)2)

-ote  o (5)e

12
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where

(1) N 5sin O(p ± sine) 2

P(2) - (dx xJ (N±xsinO) 1exp(s2xc/we)

00

+ cs2 h I] exp (xc/wep)] (36)

5L22 °

The dependence of the emissivity at w =We, and 2w on both e and We o
are contained in (l,2) and it is these quantities that we evaluate

here. Note, again, that the condition required for the validity of (34)

istaP (2) )> ~ ( nT) 2 , an(dw tha (N~ xs in ex'oiW

2

while N2 " 1. Thus, it is difficult to satisfy this requirement for

ordinarymode waves, and we restrict the analysis to consideration of the

extraordinary mode emissivity at w =We (no restriction is necessary for

emission at 2we). It is the existence of an electromagnetic mode with

frequency w = and index of refraction N % 1 which constitutes a major
e

distinction between magnetized and unmagnetized plasmas.

We consider the case of emission at w We first, and plot the

results of the numerical integration of () versus Wa/noTe in Fig. 4.

It should be noted, again, that the constraints on the analysis in this

freqenc reimethatN ( Ic > c X> X /p. In the results presented, we

freqencreimetha N(e/C >oe e

13
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chose T = 0.1 keV and w P/c = 10, which imply that p = 715 X ande e e

1.4 x 1O-3  K 0 A e. 1.4 x 102 For simplicity, we have assumed thatoe

TI = 0 in the analysis. It is clear from the figure that the angular

spectrum depends critically on both we / and the soliton amplitude,

and that no simple scaling law can be found between n (w ,0) and

W ,n T . It should be observed, however, that while increases In plasma

density (i.e., in we/Q e) leave the scaling at low levels of soliton

amplitude relatively unchanged, the scaling of the emissivity with

WoinoT e and the angular spectrum of the emission are substantially

altered at higher levels of W .
o

In Fig.5 and 6 we plot the results of a numerical integration of

+ 2) and P(2) versus WInoTe respectil.uy. It is clear from both

figures that (1) as W increases we recover the result in (32) in
0

which n± (2web) - Wo, (2) at lower levels of W the emissivity increases

faster than Wo, and (3) the angular spectrum of the emission is sensi-

tive to the soliton amplitude. We also observe that while the

ordinary mode emissivity (i.e., P(2) is relatively insensitive to the

plasma density, the extraordinary mode emissivIty is greatly modified

in going from we /1 = 0.1 to we /0e = 10. This can be explained by

noting that the emission is in the slow extraordinary mode for

We IfQ = 0.1 (i.e., the emission frequency is below the upper hybrid

frequency), and the fast extraordinary mode for we/Qe = 10. This will
e!

have severe consequences on the radiation observed from outside the

plasma, since slow extraordinary mode waves cannot readily escape from

the plasma without tunneling through the upper hybrid layer or mode

14
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coupling to the ordinary or fast extraordinary modes. Finally, we

remark that, as shown in (32), the angular spectrum of the radiation

and the scaling of n± (2w e,) with W should also be sensitive to the

transverse dimension of the soliton; however, it is beyond the scope

of this work to treat this scaling in the regime in which k1 > K

IV. SUMMARY AND DISCUSSION

In this work, expressions have been derived for the radiation ofI!
an arbitrary three dimensional Langmuir wave packet at w = we and 2we

in a uniformly magnetized plasma. The analysis of the radiation at the

plasma frequency has been limited to the regime in which the radiation

wavelength is much less than the scale length of the soliton in the

interest of deriving an analytic expression for the emissivity, which

imposes the requirement that 12(ve/c)2 N2 ; W /n T . Since the only

electromagnetic mode in a field-free plasma which frequency w = w has
2e

an index of refraction N2  W0 /noTe, this condition imposes a severe

restricLion on the present analysis to that of a very hot plasma. How-

ever, the presence of an ambient magnetic field introduces an additional

mode with a mixed electrostatic/electromagnetic polarization (i.e., the

extraordinary mode) having an index of refraction of the order of unity

in the vicinity of the plasma frequency, and which presents no

such severe restriction. While these waves cannot readily escape from

the plasma (unless some means of tunnelling through the upper hybrid

layer or mode conversion to the ordinary or fast extraordinary modes

is possible) and should not be an important characteristic of radiation

from astrophysical plasmas, study of this radiation mode may be

important in laboratory plasmas.
5- 9
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In order to determine relatively simple expressions for the

radiation emissivity and, thereby, to determine the angular spectrum of

the emission as well as the scaling of the radiated power with soliton

amplitude, the specific case of one dimensional Langmuir solitons has

been studied in some depth. In this limiting regime, it is shown that

the angular spectrum is sensitive to both the soliton amplitude and to

the transverse scale size of the soliton. While no simple scaling law

between the emissivity and the soliton amplitude is readily apparent

for w =w it is clear that for w = 2w the emissivity is linearlyfo e ,  e

proportional to the soliton amplitude when W exceeds a certain thresh-

old which depends on the plasma density, the ambient magnetic field,

and the angle of propagation of the radiation. The -immediate signifi-

cance of this result is to the scaling of the second harmonic

radiation in type III solar bursts.
2
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APPENDIX: THE DISPERSION TENSOR AND SOURCE CURRENT

The fluctuation fields giving rise to the emission are of high

order in V0, and in order to treat emission at w e and 2w e we must solve

the equations

a eM .1) (i)
-av -- 6E-v ) vvE ) +y * 6v (Al)- -- IV , e luz

e

V x 6B = I -- (n +6n)6v + (n(1) + ,n)v(i (A2)

V x 6E .... 6B , (A3)IV cat i

where 6E and 6B are the radiation fields, 6v is the high order velocity

fluctuation, and n(i) and v(1) are the first order density and velocity

fluctuations. Note that 6n, which describes the caviton structure, is

itself of second order in V0. Thus, the term in 6n 6v is of at least

fourth order in V4 and gives rise to the turbulent shift in the plasma

frequency. In addition, the term in 6nv(1) is of third order in V

and is responsible for the oscillatory current at we. In contrast,

the terms giving rise to emission at 2w e are of second order in V$.

Eliminating 6B from this system of equations, we find after some

straightforward manipulations that

(k k - k21) +1I -] a 6E(k,w) = m, (i)

+ 4'i'e (-n v)k ( 1) +((1)

W 1\1 k6S , w2  at A ', k, w'A4

18
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and

6v(kw) + (). -() (A)Ajkm) 4wenoi e •\ Al~k ) k V ,w

where )k,w denotes the Fourier transform of the enclosed quantity,

Gxx M a We2/(w2 - e2), ,zz = - e 2 /W2 , Oxy = - =

2 e /W(W2 _2) and a o = o = 0 0. In order towe  e e ' xz zx yz zy

evaluate the convolution in 6ndv, we assume the emitted spectrum to be

sharply peaked and write 6v(k,w) = Sv(k w ) 6(k-k )6(w-w ). It
%% 1\ qnO 0 'V %0

follows, therefore, that if k >> JV /Oj, then

(6n6v)k, = 6n6vk,w). (A6)

Combination of (A4)-(A6) then yields Eq. (5), in which the source

current is

(kw ei i) 4e I (i)+ v(i l
.4= •e (n .(()V 1)

(A7)

The first order density and velocity fluctuations satisfy the

equations

n(1) + n Vv() ' 0, (A8)ato

and

V =-- V~sinwet + 0' x v ( (A9

t me ez

The solutions to (A8) and (A9) follow immediately,

() en
n 2 -V2 + 2 sinw t' (A0)m e we2 (V We e e

19



v(1)

(1+..e e

+ _ 2 (~ z V )sinet] • (All)e e

Substitution of (Al0) and (All) into (At) reproduces Eqs. (10) and (11).

20
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